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Abstract— Human motion trajectory prediction, an essential
task for autonomous systems in many domains, has been on the
rise in recent years. With a multitude of new methods proposed
by different communities, the lack of standardized benchmarks
and objective comparisons is increasingly becoming a major
limitation to assess progress and guide further research. Ex-
isting benchmarks are limited in their scope and flexibility to
conduct relevant experiments and to account for contextual cues
of agents and environments. In this paper we present Atlas, a
benchmark to systematically evaluate human motion trajectory
prediction algorithms in a unified framework. Atlas offers data
preprocessing functions, hyperparameter optimization, comes
with popular datasets and has the flexibility to setup and
conduct underexplored yet relevant experiments to analyze a
method’s accuracy and robustness. In an example application
of Atlas, we compare five popular model- and learning-based
predictors and find that, when properly applied, early physics-
based approaches are still remarkably competitive. Such results
confirm the necessity of benchmarks like Atlas.

I. INTRODUCTION

Benchmarking motion prediction algorithms is a challeng-
ing task. The evaluation outcome can be affected by various
factors such as data, parameters, hyperparameters and exper-
iment design. Elaborate and carefully designed experiments
are necessary to expose specific abilities or limitations of
a method, in particular for complex learning approaches.
Influencing factors are, for example, the observation period,
i.e. the duration that agents need to be seen to allow for
accurate prediction of their motion, or the exact procedure
how to set up a testing scenario from sequences of raw person
detections. Even when evaluating a simple constant velocity
motion model with the same dataset, metrics and prediction
horizon, the evaluation results may still vary as reported in
[1] and [2] due to differences in testing scenario generation
and data pre-processing. The limitations of the protocols
commonly used to evaluate new prediction methods have
been pointed out by several authors [2]–[4].

In this paper we present the Atlas benchmark as a first
step towards automated benchmarking of motion prediction
methods in a unified framework with systematic varia-
tion of parameters. Atlas includes heterogeneous datasets
of human motion trajectories, is capable of automatically
extracting testing scenarios, and can deal with varying,
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Fig. 1. Atlas benchmark overview: (1) Supported import of new datasets
(labeled detection streams), (2) Support for contextual cues in the en-
vironment, (3) Automated calibration of prediction hyperparameters, (4)
Automated parametrized scenario extraction, (5) Direct interface to the
prediction methods.

missing and noisy agent detections using data interpolation,
downsampling and smoothing1. Compared to prior art such
as TrajNet++ [5], it offers several tunable parameters like
the observation period and prediction horizon, is able to
import semantic maps and other relevant information such
as goal positions in the map, allows to evaluate probabilistic
prediction results and to conduct robustness experiments
with simulated perception noise. Due to those features, our
benchmark works with both short- and long-term predictors.
Unlike TrajNet++, it is especially suited for studying how
prediction parameters influence the results, in contrast to
fixing the main parameters to produce the ranking scores
in a specific challenge. Furthermore, our benchmark has a
direct interface to the hyperparameter estimation framework
SMAC3 [6] to calibrate a predictor on a specific dataset.
This feature is particularly useful for model-based predictors,
which, as we will show in the experiments, can perform still
very well compared to recent learning-based ones.

We showcase Atlas by evaluating several popular model-
and learning-based methods [7]–[10] in terms of their pre-
diction accuracy, ability to predict in new environments, and
their robustness to perception noise and limited observations.

The paper is structured as follows: in Sec. II we define

1The Atlas benchmark will be available at https://github.com/
boschresearch/the-atlas-benchmark
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the problem of benchmarking motion prediction and review
prior art, and in Sec. III we introduce our benchmark.
The methods, evaluation setup and results are presented in
Sec. IV, and Sec. V concludes the paper.

II. BACKGROUND

A trajectory prediction method aims to estimate a probabil-
ity distribution over future positions of a moving agent within
a certain time horizon. Typically, a motion predictor uses
as input the agent’s current or past motion states, possibly
augmented by the current or past states of the environment.
The environment is represented by the states of other moving
agents, a topometric map of static obstacles, and possibly
semantic information associated to parts, locations or objects
of the map.

For the evaluation of a motion predictor we consider
the following elements: datasets (popular examples include
[11]–[16]), the testing scenario extraction strategy and the
evaluation metrics. As testing scenario extraction we denote
the conversion of the continuous flow of (agent) detections,
where past detections between consecutive frames form the
observation history of length Os ∈ R+ seconds (or Op ∈ Z+

positions), and future agent states within horizon Ts ∈
R+ seconds (equivalent to Tp ∈ Z+ positions) form the
predictions to be compared to the ground truth (GT). The
metrics used to this end include geometric and probabilistic
distance estimates between predicted and GT positions [4].

Alahi et al. were the first to propose a benchmark for
human trajectory prediction, called TrajNet [17]. TrajNet
has been used by many authors [18]–[26] and implements
the evaluation strategy in [1]: it uses the ETH and UCY
datasets with fixed Os = 3.2 s and Ts = 4.8 s and the
geometric metrics ADE and FDE. TrajNet does not include
variability in the main parameters Os and Ts, obstacles in
the environment, nor any notion of prediction uncertainty or
robustness.

TrajNet++ [5] improves TrajNet by including additional
datasets and it can further be extended with new ones (stored
in json format). The benchmark focuses on evaluating agent
interaction modeling approaches, and offers categorization of
scenarios into classes of motion. It includes the possibility
to predict several discrete positions for each pedestrian in
each step, but does not support other probability distribution
representations. The main limitation here, however, are the
rigidly defined testing parameters, which restrict the eval-
uation to fixed parameters Os = 3.2 s and Ts = 4.8 s.
Furthermore, the scenario extraction strategy only guarantees
that in each scenario one target pedestrian has a complete
track of requested Op + Tp consecutive positions. This con-
tradicts the assumption, commonly made by many authors,
that the history tracks for all pedestrians are available at the
time of prediction [26]–[29]. Methodologically, considering
scenarios with full observation tracks allows studying the
effects of having limited (as well as abundant) observations
for all agents. This approach allows isolating the prediction
error caused by insufficient observations of the surrounding
agents, even when observing the target one sufficiently long.

Finally, TrajNet++ does not support obstacle and semantic
information about the environment.

Based on these insights, we developed the Atlas bench-
mark with an automated procedure to extract testing scenar-
ios from datasets with flexible Op and Tp parameters. Atlas
accepts occupancy and semantic maps as input, supports
various forms of parametric and non-parametric uncertainty
representation, and includes robustness experiments with
added noise to the observed trajectories.

Other recent advances in motion prediction benchmarking
include the challenges in the automated driving workshops
at NeurIPS 20192, NeurIPS 20203 and CVPR 20204 based
on the Argo and Interaction datasets. NuScenes has an own
challenge based on their dataset5. These challenges concen-
trate on automated driving only and on specific datasets.
In robotics, Hug et al. [30] proposed a Single Trajectory
Sanity Check Benchmark, currently under construction6.
While these efforts share some aspects with Atlas, e.g., that
they allow to study the effects of data pre-processing, they
are limited in scope and flexibility, focusing on a single use-
case, a single dataset and the generation of leaderboards for
which, for example, main parameters remain fixed.

III. THE ATLAS BENCHMARK

Atlas includes five main elements: data import, preprocess-
ing, the actual prediction phase, evaluation and visualization,
see Fig. 1. This design allows to interface and parametrize
different prediction algorithms for a flexible and highly
automated evaluation and analysis.

As first step, the datasets and, if available, information
on the environment such as goals, obstacles, and semantics
are imported into the benchmark. Next, the raw data is
preprocessed with downsampling to a user-defined frequency,
misdetection interpolation and trajectory smoothing. Once
the dataset is ready, we extract the testing scenarios with
the user-specified observation and prediction lengths, and
the minimum number of observed people. The observed
past trajectories of all people in the testing scenario, along
with environment data, are explicitly interfaced as input
to the prediction algorithm. The returned predictions are
evaluated against the ground truth using several metrics.
Finally, the prediction results can be visualized with plots or
animations. Meta-parameters to control the data processing
and benchmark setup are stored in separate yaml files, and
the benchmark is accessed via Jupyter notebooks.

A. Datasets

Benchmark users can import any dataset in the specific
json file format defined by TrajNet++ [5], which includes
for each detection the time stamp, person id and position.
The json dataset format also supports obstacles and semantic

2https://ml4ad.github.io/2019/
3http://challenge.interaction-dataset.com/

prediction-challenge
4http://cvpr2020.wad.vision/
5https://www.nuscenes.org/
6https://stsc-benchmark.github.io/
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http://cvpr2020.wad.vision/
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https://stsc-benchmark.github.io/


Fig. 2. Data preprocessing in Atlas. Example trajectory from the ATC
dataset with noise and missing detections (original, on top). The same
trajectory is shown with misdetection interpolation, smoothing and adding
a controlled amount of noise.

grid maps [31], as well as goals (i.e. possible destinations of
people) in the environment, which may influence the possible
destinations of people.

Our benchmark currently includes the following three
datasets:

i) ETH [11]: This dataset contains people detections from
video data recorded outdoors in the ETH campus in two
locations: ETH and HOTEL.

ii) ATC [14]: Recorded in a shopping mall in Japan, the
dataset covers a large indoor environment with densely
crowded scenes.

iii) THÖR [16]: This dataset captures human motion in
a room with static obstacles. It includes a setup with
one obstacle (denoted as THÖR1, see Fig. 11) and with
three obstacles (which we call THÖR3, see Fig. 12).

These three datasets come from different countries and
were recorded in different environments, which increases the
diversity of the scenarios and allows comparing prediction
methods on different social and cultural contexts. For an in-
depth analysis of the datasets we refer the reader to [16]
and [4]. In addition, we provide a possibility to import any
dataset of labeled detections, as defined in Sec. II.

B. Preprocessing

Raw datasets often include noise and annotation artifacts
(e.g. missing detections) [16]. Hence, our benchmark offers
interpolation and smoothing in the preprocessing step. In
addition, as a way to evaluate robustness of prediction
algorithms, white Gaussian noise may be added to each
detection. Fig. 2 shows the preprocessing steps applied to
an example trajectory in the ATC dataset. After detecting the
missing frames in the original trajectory based on the average
annotation frequency, we interpolate the points linearly in the
missing part of the trajectory. Then, a moving average filter
is used to smooth the noise. Finally, random noise distributed
as N (0, σ2), where σ, can be added to each detection.

After preprocessing, we generate the testing scenarios with
the observation length Op and ground truth for the following
Tp frames. As prediction performance may strongly depend

on the observation length (in particular for intention estima-
tion or when person detections are noisy), it is critical that
all people in the testing scenario are observed in each of the
Op frames. A testing scenario, along with the environment
information, is then passed to the prediction step.

C. Prediction

Our benchmark offers a direct interface to the prediction
module, which is called at this step for the given testing
scenario. This allows automated evaluation with a systematic
variation of parameters, defined at the previous steps. For
optimizing the hyperparatemers of the prediction methods,
such as [7], [8], [32]–[34], Atlas includes an interface to the
SMAC3 optimizer [6].

Prior to benchmarking the prediction model on real data,
the users can first validate their methods with several
synthetic scenarios, which model fundamental interactions
between people and the environment, e.g. individuals and
groups walking in the opposite directions, crossing paths
and navigating around hindrances (see several examples in
Fig. 3). For instance, Fig. 3 (bottom left) shows two people
walking on a collision course towards each other. Their
velocities are 1 ms−1 and the initial displacement in the
y axis is 0.2 m. The frame frequency is 2.5Hz and Op is 8
(frames).

Our benchmark supports various forms of parametric and
non-parametric uncertainty representations for the prediction
results. Non-parametric particle-based uncertain predictions
are represented with a set of K discrete sampled positions
for each timestep. Alternatively, the results can be encoded
as probabilities in 2D grid-map states, separately for each
person in each timestep. Parametric uncertainty can be repre-
sented with a mixture of Gaussians: each individual mode of
motion zi ∈ [z1, . . . , zK ] is given as a sequence of Gaussian
distributions

(
N (µ1,Σ1), . . . ,N (µTp ,ΣTp)

)
, and the full

predicted probability for timestep i is
∑
i πiN (µi,Σi), i ∈

[1, . . . , Tp], where πi are the mixture weights. These options
allow the evaluation of most existing prediction algorithms.

D. Evaluation

The Atlas benchmark supports geometric and probabilistic
metrics, as defined in [4]. Geometric metrics include the
Average Displacement Error (ADE), which describes the
error between points of predicted trajectories and the ground
truth at the same timestep, and the Final Displacement Error
(FDE), which computes the error at the last prediction step.
Probabilistic metrics include the Negative Log-Probability
(NLP), which computes the average probability of the ground
truth position under the predicted distribution for the corre-
sponding frame, and Top-k ADE and FDE, which compute
the displacements between the ground truth position and the
closest of the K samples from the predicted distribution.

E. Experiments

Building on the datasets, pre-processing steps and metrics
described above, the benchmark enables researchers to set
up and conduct several experiments to study prediction



Fig. 3. Synthetic test scenarios in Atlas: chasing (top left), opposing (bottom left), and crossing (right). The blue and orange dots show the observations
of two simulated agents, the dashed lines show the social force predictions [7], and the dotted lines the Trajectron++ results [10] as two example methods.
These scenarios are used for initial calibration and inspection of the methods.

performance under varying conditions. Such experiments
are not only key for researchers to better understand the
algorithm or model at hand, e.g. during ablation studies,
but also for practitioners to evaluate a predictor within a
system with adjacent up- and downstream tasks and real-
world deployments.

1) Prediction accuracy conditioned on parameters: Os
and Ts are among the main factors, associated with predict-
ing motion. The accuracy naturally degrades for further time
instances, while longer observations may improve it overall.
In Atlas it is possible to measure the accuracy of prediction
conditioned on these two main parameters. Further accuracy
breakdown is possible by conditioning the measured values
on the number of people in the scenario.

2) Transfer experiments: A crucial part of evaluating a
prediction method is to analyze its generalization ability to
new environments not included in the training data. Such
experiments are most often overlooked in related work. In
Atlas it is possible to script hyperparameter optimization in
one dataset, and evaluate the method in another. In the future
we plan to extend this functionality for training models.

3) Robustness experiments: For a system to work in the
real world, a predictor must be robust against imperfection
in perception such as noisy agent position observations.
One possible way to quantify robustness, implemented in
Atlas, is by measuring accuracy on the testing scenarios,
after artificially adding increasing amounts of white Gaussian
noise.

IV. EXAMPLE EVALUATION

With the Atlas benchmark described above, we now
demonstrate its usage in an example evaluation. To this
end, we conducted experiments to study and compare the
performance of a small range of popular methods for human
motion prediction, from simple physics-based baselines to
state-of-the-art deep learning methods.

A. Prediction methods

Our benchmark comes with several model- and learning-
based methods [7]–[10], [32]. The Social force model [7]
(Sof) is a simple and well-known approach to interaction

modeling of people in groups, used in applications such
as crowd behavior analysis, simulation and animation [34],
[35], robotics [36] and human motion prediction [37]. We
also consider the extension of the social force model by
Karamouzas et al. [8] (Kara) who added a predictive ability
to the initial approach by forward projection of the agent’s
current motion and avoiding collisions in advance. The
constant velocity motion model (CVM) further serves as
baseline in our experiments.

The shift towards learning-based methods for human mo-
tion prediction has produced a large number of new methods
and models in recent years. For our example comparison,
we include two state-of-the-art methods, Trajectron++ [10]
(T++), a graph-structured generative neural network based
on a conditional-variational autoencoder and Social GAN [9]
(SGAN), which combines a recurrent sequence-to-sequence
model with a generative adversarial network.

B. Setup

In our evaluation we vary the testing parameters around
the commonly used values of Os = 3.2 and Ts = 4.8 s. As
all datasets in our experiments are downsampled to 2.5Hz,
this implies Op = 8 and Tp = 12. This is the standard
setup in all experiments in ATC and THÖR, where one
parameter (for instance Tp, Op, the amount of added noise σ,
calibration/validation datasets) is varied. Due to the limited
number of data in ETH, we set Os = 2.4 and Ts = 4.0
(equivalent to Op = 6 and Tp = 10) instead. To stress
the agent interaction aspect of motion prediction, scenarios
with less than 2 people are excluded from the evaluation.
We report the mean and standard deviation of the ADE and
FDE metrics across all scenarios in the experiment.

The force-based methods (Sof and Kara) are optimized
separately in each dataset on the initial 30% of the detections
(20% in case of ETH). The target optimization metric is
FDE at Ts = 4.8 s. For the optimization parameters of
each individual method, we refer the reader to the provided
implementations. The current velocity v̂i0 of each person i,
used as input to the force-based methods and the CVM, is
calculated as a weighted sum of the finite differences in



Prediction horizon
Method 1.6 s 3.2 s 4.8 s 8 s

A
D

E
CVM 0.155± .04 0.319± .09 0.499± .15 0.870± .30
Sof 0.156± .05 0.318± .09 0.494± .15 0.870± .30

Kara 0.164± .05 0.324± .09 0.508± .15 0.872± .31
SGAN 0.240± .08 0.500± .15 0.785± .24 –
T++ 0.152± .04 0.340± .09 0.549± .16 1.006± .29

FD
E

CVM 0.272± .08 0.621± .19 1.000± .33 1.845± .71
Sof 0.272± .08 0.620± .19 1.008± .33 1.846± .71

Kara 0.279± .08 0.623± .19 1.000± .33 1.845± .71
SGAN 0.418± .13 0.977± .31 1.592± .51 –
T++ 0.273± .08 0.689± .20 1.149± .35 2.187± .70

TABLE I
ADE IN THE ATC DATASET VARYING THE PREDICTION HORIZONS

Prediction horizon
Method 1.6 s 3.2 s 4.8 s 8 s

A
D

E

CVM 0.20± 0.09 0.50± 0.22 0.87± 0.39 1.80± 0.73
Sof 0.29± 0.13 0.54± 0.22 0.82± 0.34 1.42± 0.52

Kara 0.32± 0.14 0.57± 0.23 0.85± 0.35 1.44± 0.54
SGAN 0.29± 0.11 0.65± 0.22 1.08± 0.36 –
T++ 0.18± 0.07 0.47± 0.18 0.84± 0.33 1.68± 0.62

FD
E

CVM 0.38± 0.17 1.07± 0.48 1.95± 0.86 4.10± 1.51
Sof 0.46± 0.20 1.02± 0.44 1.66± 0.74 2.95± 1.08

Kara 0.49± 0.21 1.05± 0.45 1.69± 0.75 2.96± 1.08
SGAN 0.52± 0.19 1.36± 0.47 2.33± 0.27 –
T++ 0.34± 0.14 1.04± 0.42 1.91± 0.75 3.79± 1.28

TABLE II
ADE IN THE THÖR3 DATASET VARYING THE PREDICTION HORIZON

the observed trajectories. The sequence of past velocities
(vi−1, . . . , v

i
−Op) is weighted with a zero-mean Gaussian

filter with σ = 1.5 to put more weight on the more recent ob-
servations: v̂i0 =

∑Op
t=1 v

i
−tg(t), where g(t) = 1

σ
√
2π
e−

1
2 (

t
σ )

2

.
The goal of each person is set to the point reached by forward
propagating 40 steps into the future with v̂i0.

The Trajectron++ implementation is accessed from the
official repository7, for which we provide a lightweight
interface. This predictor is trained on the ETH dataset. We
sample Trajectron++ once to get the most likely predicted
trajectory.

For the Social GAN we use the implementation provided
by the authors8. The model is trained on the ETH dataset,
and is limited to accepting 8 frames as observations and
producing 12 frames of prediction. Therefore, we exclude it
from all experiments with Op < 8 and Tp > 12. Similarly
to T++, we sample SGAN for one mode.

In addition to the accuracy measurements under vari-
ous conditions, we also estimate the prediction runtime
conditioned on the number of people in the scenario. All
experiments were executed on a laptop with an Intel i7 2.7
GHz 12 core processor and 32 GB of RAM.

Note that the evaluation results may differ from the
original papers [1], [9], [10], due to the differences in
the evaluation protocols, which are not fully disclosed and
therefore not reproducible. This particularly highlights the
need for standardized benchmarks like Atlas, which allow

7https://github.com/StanfordASL/Trajectron-plus-
plus

8https://github.com/agrimgupta92/sgan

Fig. 4. ADE/FDE in the ATC dataset with different observation lengths

Fig. 5. ADE/FDE in the THÖR1 dataset with different observation lengths

for transparent verification of reported results and direct
comparisons of methods under various conditions of interest.

C. Results and Discussion

We present the results in Tables I–III, Fig. 4–8 and show
example predictions in Fig. 9–12. Due to space limitations,
results of each experiment are presented in selected datasets
only, but the discussed trends are observed in all of them.

Tables I and II show the results of evaluating the ADE
and FDE on different prediction horizons with the fixed
observation period Os = 3.2 s. In the ATC dataset, which
contains mostly straight linear motion, even in crowded
scenes, the force-based approaches perform on the level of
constant velocity. Trajectron++ and SGAN, on the other
hand, attempt to predict more variety in motion than what
exists in real life, leading to higher displacement errors (see
an example scenario in Fig. 10).

In the THÖR3 dataset (Table II and Fig. 12), on the
contrary, people navigate in a tighter environment across
multiple directions, increasing the importance of good inter-
action modeling. Here Trajectron++ outperforms the CVM,
however the best and most stable results are reached by the
force-based methods.

In the experiments with different observation horizons
we found all methods to perform very robustly even with
observation lengths as short as 1.2 s, see Fig. 4 and 5. The

https://github.com/StanfordASL/Trajectron-plus-plus
https://github.com/StanfordASL/Trajectron-plus-plus
https://github.com/agrimgupta92/sgan


Test
C

al
ib

ra
te

Dataset ETH ATC THÖR1 THÖR3

ETH

CVM: 0.283± .12
Sof: 0.277± .11

Kara: 0.278± .12
SGAN: 0.787± .42

T++: 0.399± .36

0.499± .15
0.494± .15
0.498± .15
0.785± .24
0.549± .16

0.69± .39
0.58± .32
0.62± .33
0.94± .39
0.66± .30

0.87± .39
0.80± .34
0.81± .38
1.08± .36
0.84± .33

ATC Sof: 0.29± .13
Kara: 0.34± .15

0.497± .15
0.501± .16

0.67± .37
0.58± .31

0.85± .38
0.81± .36

THÖR1 Sof: 0.31± .14
Kara: 0.28± .11

0.491± .15
0.493± .15

0.57± .30
0.58± .32

0.76± .34
0.81± .34

THÖR3 Sof: 0.29± .12
Kara: .28± .11

0.50± .15
0.49± .15

0.60± .32
0.61± .33

0.82± .34
0.85± .35

TABLE III
ADE IN THE TRANSFER EXPERIMENTS ON DIFFERENT DATASETS

Fig. 6. ADE/FDE in the ETH dataset with added noise

ADE/FDE results for increasing amounts of noise in the
agent positions added to the ETH and THÖR3 data are shown
in Fig. 6 and 7. The performance of all methods, including
Trajectron++, degrades considerably when the observations
become more unreliable (with σ ≥ 0.2) where SGAN shows
an almost linear degradation to the amount of noise, as com-
pared to exponential decrease of other methods. Again, the
model-based methods outperform the learning-based ones.

Table III summarizes the transfer experiment, where the
methods are calibrated on one dataset and tested on another.
We observe that the predictive social force approach (Kara)
delivers more stable transfer performance in all cases as
compared to the Sof method.

An overall conclusion from the experiments, supported
by the qualitative analysis in Fig. 9–12, is that the model-
based prediction methods, properly calibrated, with velocity
filtering and goal projection, offer a surprisingly competitive
alternative to the complex state-of-the-art deep learning ap-
proaches. This result seems to confirm the recent findings
by Schöller et al. [2], once again indicating that learning
interactions is an extremely challenging task prone to evalu-
ation pitfalls. That, and the considerable runtime differences
in favor of the model-based approaches in Fig. 8, justifies
the need for further research into interaction models, both
engineered and learned ones. Another conclusion is that, in
our experiments, the predictive social force model does not
reliably outperform the original method. Finally, the results

Fig. 7. ADE/FDE in the THÖR3 dataset with added noise

Fig. 8. Average runtimes to compute predictions for Os = 3.2 s and
Ts = 4.8 s in the scenes from the ATC dataset, sorted by the number of
people. Left: model-based methods and SGAN, right: Trajectron++. Despite
achieving roughly comparable performance, the model-based methods are
two orders of magnitude faster than the Trajectron++. SGAN has constant
runtime performance. The irregular shape of the Trajectron++ performance
curve is explained by the number of and the irregularities in the scenarios:
due to the pooling and pruning when computing interactions, a scene with
10 people far away from each other might be easier to solve than with 6
people closely interacting.

of the force-based methods calibrated on simpler datasets
with a lot of linear motion (such as the ETH and ATC)
converge to the CVM model up to the 3rd decimal digit
(i.e. less than 1 cm difference).

V. SUMMARY AND FUTURE WORK

The number of approaches for human motion prediction
has grown rapidly in recent years but different datasets
and varying evaluation protocols make in-depth analysis
and comparisons difficult. This is the motivation for At-
las, introduced in this paper, an evaluation benchmark for
motion prediction that enables researchers to analyze and
compare their methods in an unified easy-to-use framework.
Unlike related benchmarks and challenges, Atlas offers data
preprocessing functions, hyperparameter optimization, three
popular datasets and the fexibility to setup and conduct
underexplored yet relevant experiments to stress a method’s
accuracy and robustness. In an example application of Atlas,
we compared five popular prediction methods, three early
physics-based approaches and two learning-based state-of-
the-art approaches and found that the model-based methods,
properly applied, are surprisingly competitive. While these
findings motivate further research particularly in agent in-
teraction modeling, they also show the necessity for such



Fig. 9. Predictions in the ETH scenario

Fig. 10. Predictions in the ATC scenario

Fig. 11. Predictions in the THÖR1 scenario

Fig. 12. Predictions in the THÖR3 scenario



benchmarks to reproduce, confirm and further extend such
results.

In future work we intend to extend Atlas with support for
more datasets, more baselines, more motion cues such as
group motion or articulated body pose, non-human dynamic
agents such as vehicles or robots and other relevant environ-
ment descriptors, e.g. maps of dynamics [38]. Furthermore,
considering the downstream performance metrics in how
the predictions affect the robot behavior, we seek to close
the loop on the human motion prediction benchmarking by
connecting it to robot navigation simulation [39].
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[2] C. Schöller, V. Aravantinos, F. Lay, and A. Knoll, “What the constant
velocity model can teach us about pedestrian motion prediction,” IEEE
Robotics and Automation Letters, vol. 5, no. 2, pp. 1696–1703, 2020.

[3] S. Becker, R. Hug, W. Hubner, and M. Arens, “Red: A simple but
effective baseline predictor for the trajnet benchmark,” in Proc. of the
Europ. Conf. on Comp. Vision (ECCV) Workshops, 2018.

[4] A. Rudenko, L. Palmieri, M. Herman, K. M. Kitani, D. M. Gavrila,
and K. O. Arras, “Human motion trajectory prediction: A survey,”
Int. J. of Robotics Research, vol. 39, no. 8, pp. 895–935, 2020.

[5] P. Kothari, S. Kreiss, and A. Alahi, “Human trajectory forecasting in
crowds: A deep learning perspective,” IEEE Trans. on Intell. Transp.
Syst. (TITS), 2021.

[6] M. Lindauer, K. Eggensperger, M. Feurer, S. Falkner, A. Biedenkapp,
and F. Hutter, “Smac v3: Algorithm configuration in python,” https:
//github.com/automl/SMAC3, 2017.

[7] D. Helbing and P. Molnar, “Social force model for pedestrian dynam-
ics,” Physical review E, vol. 51, no. 5, p. 4282, 1995.

[8] I. Karamouzas, P. Heil, P. van Beek, and M. H. Overmars, “A
predictive collision avoidance model for pedestrian simulation,” in
Int. Workshop on Motion in Games. Springer, 2009, pp. 41–52.

[9] A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi, “Social
GAN: Socially acceptable trajectories with generative adversarial
networks,” in Proc. of the IEEE Conf. on Comp. Vis. and Pat. Rec.
(CVPR), June 2018.

[10] T. Salzmann, B. Ivanovic, P. Chakravarty, and M. Pavone, “Tra-
jectron++: Dynamically-feasible trajectory forecasting with heteroge-
neous data,” in European Conference on Computer Vision. Springer,
2020, pp. 683–700.

[11] S. Pellegrini, A. Ess, K. Schindler, and L. van Gool, “You’ll never
walk alone: Modeling social behavior for multi-target tracking,” in
Proc. of the IEEE Int. Conf. on Computer Vision (ICCV), 2009, pp.
261–268.

[12] A. Lerner, Y. Chrysanthou, and D. Lischinski, “Crowds by example,”
in Computer Graphics Forum, vol. 26, no. 3. Wiley Online Library,
2007, pp. 655–664.

[13] B. Majecka, “Statistical models of pedestrian behaviour in the forum,”
Master’s thesis, School of Informatics, University of Edinburgh, 2009.
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[30] R. Hug, S. Becker, W. Hübner, and M. Arens, “A short note on
analyzing sequence complexity in trajectory prediction benchmarks,”
2020.

[31] A. Rudenko, L. Palmieri, J. Doellinger, A. J. Lilienthal, and K. O.
Arras, “Learning occupancy priors of human motion from semantic
maps of urban environments,” IEEE Robotics and Automation Letters,
vol. 6, no. 2, pp. 3248–3255, 2021.

[32] F. Zanlungo, T. Ikeda, and T. Kanda, “Social force model with explicit
collision prediction,” EPL (Europhysics Letters), vol. 93, no. 6, p.
68005, 2011.

[33] S. Kim, S. J. Guy, W. Liu, D. Wilkie, R. W. H. Lau, M. C. Lin, and
D. Manocha, “BRVO: Predicting pedestrian trajectories using velocity-
space reasoning,” Int. J. of Robotics Research, vol. 34, no. 2, pp. 201–
217, 2015.

[34] F. Farina, D. Fontanelli, A. Garulli, A. Giannitrapani, and D. Prat-
tichizzo, “Walking ahead: The headed social force model,” PloS one,
vol. 12, no. 1, p. e0169734, 2017.

[35] X. Yang, H. Dong, Q. Wang, Y. Chen, and X. Hu, “Guided crowd
dynamics via modified social force model,” Physica A: Statistical
Mechanics and its Applications, vol. 411, pp. 63–73, 2014.

[36] M. Luber, J. A. Stork, G. D. Tipaldi, and K. O. Arras, “People tracking
with human motion predictions from social forces,” in Proc. of the
IEEE Int. Conf. on Robotics and Automation (ICRA), 2010, pp. 464–
469.

[37] A. Rudenko, L. Palmieri, and K. O. Arras, “Joint prediction of human
motion using a planning-based social force approach,” in Proc. of the
IEEE Int. Conf. on Robotics and Automation (ICRA), 2018, pp. 1–7.

[38] T. P. Kucner, A. J. Lilienthal, M. Magnusson, L. Palmieri, and C. S.
Swaminathan, Probabilistic mapping of spatial motion patterns for
mobile robots. Springer, 2020.

[39] E. Heiden, L. Palmieri, L. Bruns, K. O. Arras, G. S. Sukhatme, and
S. Koenig, “Bench-mr: A motion planning benchmark for wheeled
mobile robots,” IEEE Robotics and Automation Letters, vol. 6, no. 3,
pp. 4536–4543, 2021.

https://github.com/automl/SMAC3
https://github.com/automl/SMAC3

	I Introduction
	II Background
	III The Atlas Benchmark
	III-A Datasets
	III-B Preprocessing
	III-C Prediction
	III-D Evaluation
	III-E Experiments
	III-E.1 Prediction accuracy conditioned on parameters
	III-E.2 Transfer experiments
	III-E.3 Robustness experiments


	IV Example Evaluation
	IV-A Prediction methods
	IV-B Setup
	IV-C Results and Discussion

	V Summary and Future Work
	References

